Multi-Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation.
نویسندگان
چکیده
Interest in transcutaneous electrical stimulation of the lumbosacral spinal cord is increasing in human electrophysiological and clinical studies. The stimulation effects on lower limb muscles depend on the depolarization of segmentally organized posterior root afferents and, thus, the rostro-caudal stimulation site. In previous studies, selective stimulation was achieved by varying the positions of single self-adhesive electrodes over the thoracolumbar spine. Here, we developed a multi-electrode surface array consisting of 3 × 8 electrode pads and tested its stimulation-site specificity. The array was placed longitudinally over the spine covering the T10-L2 vertebrae. Two different hydrogel layer configurations were utilized: a single layer adhered to all electrode pads of the array and a configuration comprised of eight separate strips attached to the three transverse electrode pads of each level. Voltage measurements demonstrated that an effectively focused field distribution along the longitudinal extent of the array was not accomplished when using the single continuous hydrogel layer, and segmental selective stimulation of the posterior root afferents was not possible. The separate strips produced a focused electric field distribution at the rostro-caudal level of the electrode pads selected for stimulation. This configuration allowed for the preferential elicitation of posterior root-muscle reflexes in either the L2-L4 innervated quadriceps or the L5-S2 innervated triceps surae muscle groups. Such multi-electrode array for transcutaneous spinal cord stimulation shall allow for improved control of stimulation conditions in electrophysiological studies and time-dependent and site-specific stimulation patterns for neuromodulation applications.
منابع مشابه
Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study.
Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation, and movement. The human lumbar cord has become a target for modification of motor control by epidural and, more recently, by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when a...
متن کاملCommon neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes
Epidural electrical stimulation of the lumbar spinal cord is currently regaining momentum as a neuromodulation intervention in spinal cord injury (SCI) to modify dysregulated sensorimotor functions and augment residual motor capacity. There is ample evidence that it engages spinal circuits through the electrical stimulation of large-to-medium diameter afferent fibers within lumbar and upper sac...
متن کاملModification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects.
Dynamic task-dependent regulation of reflexes controlled by the central nervous system plays an integral part in neurocontrol of locomotion. Such modifications of sensory-motor transmission can be studied by conditioning a test reflex with specific motor tasks. To elicit short-latency test reflexes, we applied a novel transcutaneous spinal cord stimulation technique that depolarizes large-diame...
متن کاملFlexible Electrode Array for Retinal Stimulation
In this Work, ITO/PET (Indium Tin Oxide / Polyethylene Terephthalate) electrode structure which provides biocompatibility, mechanical stability and flexibility is fabricated. Flexible ITO/PET implantable electrode array for a retina has been developed. The electrode array is fabricated on a thin PET/ITO substrate and is encapsulated using, SU-8, an insulating material. PET substrate and SU-8 po...
متن کاملBody Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial organs
دوره 39 10 شماره
صفحات -
تاریخ انتشار 2015